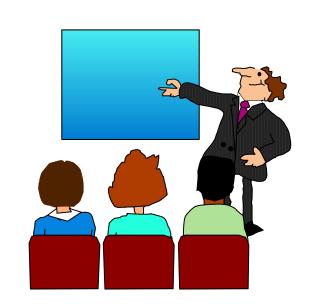
Assembler Language "Boot Camp" Part 1 - Numbers and

Part 1 - Numbers and Basic Arithmetic

SHARE in San Francisco August 18 - 23, 2002 Session 8181



- ■Who are we?
 - John Dravnieks, IBM Australia
 - John Ehrman, IBM Silicon Valley Lab
 - Michael Stack, Department of Computer Science, Northern Illinois University

- Who are you?
 - An applications programmer who needs to write something in S/390 assembler?
 - An applications programmer who wants to understand S/390 architecture so as to better understand how HLL programs work?
 - A manager who needs to have a general understanding of assembler?
- Our goal is to provide for professionals an introduction to the S/390 assembly language

- These sessions are based on notes from a course in assembler language at Northern Illinois University
- The notes are in turn based on the textbook, <u>Assembler Language with ASSIST and</u> <u>ASSIST/I</u> by Ross A Overbeek and W E Singletary, Fourth Edition, published by Macmillan

- The original ASSIST (<u>Assembler System for Student Instruction and Systems Teaching)</u> was written by John Mashey at Penn State University
- ASSIST/I, the PC version of ASSIST, was written by Bob Baker, Terry Disz and John McCharen at Northern Illinois University

- Both ASSIST and ASSIST/I are in the public domain, and are compatible with the System/370 architecture of about 1975 (fine for beginners)
- Both ASSIST and ASSIST/I are available at http://www.cs.niu.edu/~mstack/assist

- Other materials described in these sessions can be found at the same site, at http://www.cs.niu.edu/~mstack/share
- Please keep in mind that ASSIST and ASSIST/I are not supported by Penn State, NIU, or any of us

- Other references used in the course at NIU:
 - Principles of Operation
 - System/370 Reference Summary
 - High Level Assembler Language Reference
- Access to PoO and HLASM Ref is normally online at the IBM publications web site
- Students use the S/370 "green card" booklet all the time, including during examinations (SA22-7209)

Our Agenda for the Week

- Session 8181: Numbers and Basic Arithmetic
- Session 8182: Instructions and Addressing
- Session 8183: Assembly and Execution; Branching

Our Agenda for the Week

Session 8184: Arithmetic; Program Structures

Session 8185: Decimal and Logical Instructions

Session 8186: Assembler Lab Using ASSIST/I

Today's Agenda

- Decimal, Binary and Hexadecimal Numbers and Conversions
- Main Storage Organization and Signed Binary Numbers
- Integer Arithmetic and Overflow
- Getting Started with ASSIST/I

Decimal, Binary and Hexadecimal Numbers and Conversions

In Which We Learn to Count All Over Again

Counting in Bases 10, 2, and 16

Dec	Bin	Hex	Dec	Bin	Hex
0	0000	0	8	1000	8
1	0001	1	9	1001	9
2	0010	2	10	1010	A
3	0011	3	11	1011	В
4	0100	4	12	1100	C
5	0101	5	13	1101	D
6	0110	6	14	1110	E
7	0111	7	15	1111	F
			16	10000	10

Numbers in Different Bases

- Consider how we write numbers in base 10, using the digits 0 - 9:
 - $-832_{10} = 800_{10} + 30_{10} + 2_{10}$
 - $= 8 \times 10^{2} + 3 \times 10^{1} + 2 \times 10^{0}$
- For numbers in base 2 we need only 0 and 1:
 - $\blacksquare 1101_2 = 1000_2 + 100_2 + 00 + 1$
 - $= 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$
- But because it requires less writing, we usually prefer base 16 to base 2

Caution!

The value of a number may be ambiguous when the base isn't indicated

$$1011 = ?_{10}$$

$$1011_2 = 11_{10}$$

$$1011_{16} = 4113_{10}$$

The base will usually be clear from the context, but will otherwise be provided

Converting Binary & Hexadecimal to Decimal

$$1011_{2} = 1 \times 2^{3} = 1 \times 8 = 8$$

$$+ 0 \times 2^{2} = 0 \times 4 = 0$$

$$+ 1 \times 2^{1} = 1 \times 2 = 2$$

$$+ 1 \times 2^{0} = 1 \times 1 = 1$$

$$A61_{16} = 10 \times 16^{2} = 10 \times 256 = 2560$$
+ $6 \times 16^{1} = 6 \times 16 = 96$
+ $1 \times 16^{0} = 1 \times 1 = 1$
 2657

Note: numbers without subscript are base 10

Converting Decimal to Binary & Hexadecimal

- To convert a decimal number n to base b
 - 1. Divide n by b, giving quotient q and remainder r
 - 2. Write r as the rightmost digit, or as the digit to the left of the last one written
 - 3. If q is zero, stop; otherwise set n = q and go back to Step 1.
- Note that each digit will be in the range 0 to b-1

Example: Convert 123₁₀ to Base 16

- 123 / 16 = 7 with remainder 11, so the rightmost digit is B
- \mathbf{Z} 7 / 16 = 0 with remainder 7, so the next digit to the left is 7
- Since quotient is 0, stop
- \blacksquare Result is $123_{10} = 7B_{16}$
- \blacksquare A similar process shows $123_{10} = 1111011_2$

Conversions Between Bin and Hex

- These are the easiest of the conversions, since $16 = 2^4$ and we can convert by groups of digits
- To convert from binary to hexadecimal
 - 1. Starting at the right, separate the digits into groups of four, adding any needed zeros to the left of the leftmost digit so that all groups have four digits
 - 2. Convert each group of four binary digits to a hexadecimal digit

Conversions Between Bin and Hex

- So to convert 101101 to hex,
 - 1. Group the digits and add zeros: 0010 1101
 - 2. Convert to hex digits: 2 D
- To convert from hexadecimal to binary, simply reverse the algorithm
- \square So $2C5_{16} = 0010 1100 0101 = 1011000101₂$

Arithmetic with Unsigned Numbers

- Addition and subtraction of unsigned numbers is performed in hexadecimal and binary just the same as it is in decimal, with carries and borrows
- We normally use <u>signed</u> numbers, so we won't dwell on unsigned numbers

Arithmetic with Unsigned Numbers

```
1101 <--- carries
                       11110 <--- carries
                        10110
 FCDE
+ 9A05
                       + 1011
                       100001
196E3
                        0110+c <--- borrows
   BD+c <--- borrows
                       111000
 FCDE
 -9AE5
                      - 10011
  61F9
                       100101
```

Main Storage Organization and Signed Binary Numbers

Main Storage Organization

- In order to understand how <u>signed</u> numbers are represented in a binary computer, we need to understand memory organization
- Abstractly, a <u>binary digit</u> (or <u>bit</u>) can be represented by any 2-state system: on-off, true-false, etc.
- A computer's memory is simply a collection of millions of such systems implemented using electronic switches

Main Storage Organization

- Memory is organized by grouping eight bits into a <u>byte</u>, then assigning each byte its own identifying number, or <u>address</u>, starting with zero
- ■Bytes are then aggregated into <u>words</u> (4 bytes), <u>halfwords</u> (2 bytes) and <u>doublewords</u> (8 bytes)
 - One byte = eight bits
 - One word = four bytes = 32 bits

Main Storage Organization

- Typically, each of these aggregates is aligned on an address boundary which is evenly divisible by its size in bytes
- So, a fullword (32 bits) is aligned on a 4-byte boundary (addresses 0, 4, 8, 12, 16, 20, etc.)
- Remember, memory <u>addresses refer to</u> <u>bytes</u>, not bits or words

- Representing <u>unsigned</u> binary integers was fairly simple, but how can we include a sign?
- There are three ways we might represent signed integers, using a single bit as the sign (customarily the leftmost bit)
 - Signed-magnitude
 - Ones' complement
 - Two's complement

- Signed-magnitude is the most familiar (+17, -391) and we will see later how this is used in S/390
 - Allocating an extra bit for the sign, since $9_{10} = 1001_2$, we would write +9 as $0\ 1001_2$ and -9 as $1\ 1001_2$

- The ones' complement of a number is found by replacing each 1 with 0 and each 0 with 1
 - If we use one bit for the sign, then since 9_{10} is 1001_2 , we would write +9 as $0\ 1001_2$ and -9 as $1\ 0110_2$

- The two's complement representation is formed by taking the ones' complement and adding 1
 - In this notation, again using one bit for the sign, we write +9 as 0 1001₂ and -9 as 1 0111₂

- In the S/390, a negative binary integer is represented by the two's complement of its positive value
 - Note that zero is its own complement in this representation (no +0 or -0), since:

- In S/390, integers are represented in a 32-bit fullword, using the first bit as the sign
- A fullword can contain non-negative integers in the range 0 to 2^{31} –1 (with sign bit = 0)
- A negative integer in the range $-2^{31}+1$ to -1 (with sign bit = 1) is formed by taking the two's complement of its absolute value

Representation of Signed Binary Integers: Examples

- -2³¹ is represented by 1000...000 but this number is not the two's complement of any positive integer
- In two's complement representation
 - +1 = 00000000 00000000 00000000 00000001
- Or, in the more commonly used hexadecimal
 - +1 = 00000001
 - -1 = FFFFFFFF

Integer Arithmetic and Overflow

Arithmetic with Signed Numbers

Let's look at examples of addition and subtraction using signed numbers in two's complement. These examples use only 4 bits, not 32, with the leftmost bit as sign.

$$+3 = 0 011$$

 $+2 = 0 010$
 $+5 0 101$

$$+3 = 0 \ 011$$
 $-2 = 1 \ 110$ (Two's complement of 0 010)
 $+1 \ 0 \ 001$ (The carry out is ignored)

Arithmetic with Signed Numbers

Now, how about −3 plus +2

$$-3 = 1 101$$
 $+2 = 0 010$
 $-1 111$

Arithmetic with Signed Numbers

- Notice that the sign is correct each time, and the result is in two's complement notation
- Also, subtraction is performed by <u>adding</u> the two's complement of the subtrahend to the minuend. So +3 +2 = +3 + (-2).

Arithmetic with Signed Numbers

■ Computer arithmetic using 32-bit fullwords is a bit more complex, and is always shown in hex. Also, we will no longer display a separate sign bit (it will be part of the leftmost hex digit):

00000011 AE223464 +0000010B +5FCA5243 0000011C ODEC86A7

Arithmetic with Signed Numbers

- Subtraction is performed by adding the two's complement
- Carry bits are ignored (results are correct anyway)

$$F89ABCDE F89ABCDE$$

$$-6D4AFBC0 = +92B50440$$

$$8B4FC11E$$

- What if two large numbers are added and the result is greater than 2^{31} –1 (or less than -2^{31})?
- And how can we tell if this happened?
- In order to understand this, we will again demonstrate with our very small "words" of four bits, the first of which is the sign
- These "4-bit words" can handle integers in the range from -8 to +7 (1 000 to 0 111)

- Now let's see what happens when we try to add +5 to +4 (we'll do this in binary, using our four-bit words).
- Overflow will occur since the result is greater than +7.

- ■This is detected by checking the carry into the sign position and the carry <u>out of</u> the sign position
- If they are not equal, overflow occurred and the result is invalid.

```
Out In [not equal, so overflow occurred]
  \  /
     01 00 <-- carries
     0 101 = +5
     <u>0 100</u> = +4
     1 001 = invalid (due to overflow)
```

The program may or may not take action on overflow, but it normally should since the result is invalid

■But be very careful! The S/390 is a binary computer, not hexadecimal, so the check for overflow must be done using the binary representation - that is, we must look at bits, not hex digits

So, if we add as follows...

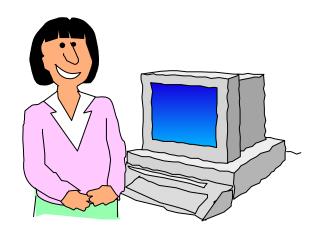
```
1111...
D13BCF24 D = 1101...
+F3C12B97 F = 1111...
1100...
```

... we can see that overflow does not occur (1 in and 1 out)

■ But if we make the mistake of checking the hex digits, we see what looks like overflow

10 D1... +F3...

Getting Started With ASSIST/I



ASSIST/I Features

- ASSIST/I is an integrated assembler and instruction interpreter, plus a text editor and interactive debugger
- There are built-in functions (X-instructions) for I/O and data conversion
- Program tracing lets you watch "everything" happen

ASSIST/I Features

- It is a useful tool for getting started and "tinkering" on a PC without needing any host-system access
- A User Guide is included in the "Starter Kit" handout
- And it's free!

ASSIST/I Limitations

- ASSIST/I supports only an older, less-rich instruction set
- Modern assembler features are missing
- Programming style may be less robust than desired

ASSIST/I Limitations

- Text editor functions are rather awkward
 - It may be easier to use a simple PC editor
- System macros aren't available

Getting Started with ASSIST/I

- Easiest: run everything from the diskette
 - Change your disk drive to A: and your working directory to \BootAsst\
 - Enter CAS, and follow the prompts to run program DEMOA.ASM
 - We'll step through its execution and show how to create a .PRT file
- Try some of the other DEMO programs